Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; 331: 118219, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663784

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Veratrum nigrum L. (V. nigrum) is a well-known herb with a lengthy history of use in Asian and European countries. V. nigrum has been traditionally used to treat epilepsy, hypertension, malignant sores, and stroke, and it possesses emetic and insecticide properties. AIM OF THE REVIEW: This review summarized the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics and metabolism, and toxicity of V. nigrum as well as its incompatibility with other herbs. Current challenges in the use of V. nigrum and possible future research directions were also discussed. MATERIALS AND METHODS: Information on V. nigrum was collected from electronic databases such as PubMed, Google Scholar, Web of Science, CNKI, and WanFang DATA; Masterpieces of Traditional Chinese Medicine; local Chinese Materia Medica Standards; and relevant documents. RESULTS: In ethnomedical practice, V. nigrum has been used as an emetic and insecticide. Approximately 137 compounds have been isolated from V. nigrum, including alkaloids, stilbenes, flavonoids, organic acids, and esters. Its crude extracts and compounds have shown various effects, including anticancer, hypotensive, insecticidal, and antimicrobial activities as well as the ability to improve hemorheological abnormalities. Pharmacokinetic studies have indicated that veratramine (VAM) and jervine have high bioavailability and possibly enterohepatic circulation. In addition, the sex-related pharmacokinetic differences in V. nigrum alkaloids warrant further attention. Toxicological studies have indicated that cevanine-type alkaloids and VAM may be the main toxic components of V. nigrum, and purine metabolism disorders may be related to V. nigrum toxicity. Furthermore, the neurotoxicity and embryotoxicity of V. nigrum have also been observed. The quality control of V. nigrum and the mechanism underlying its incompatibility with other herbs also deserve further research and refinement. CONCLUSION: This review summarized the existing information on V. nigrum, laying the foundation for further studies on this herb and its safe use. Among the various compounds present in V. nigrum, steroid alkaloids are the most numerous and have high content; furthermore, they are closely related to the pharmacological effects of V. nigrum, but their toxicity can not also be ignored. Given that toxicity is a critical issue limiting the clinical application of V. nigrum, more toxicological studies on V. nigrum and its active ingredients, especially steroid alkaloids, should be conducted in the future to further explore its toxicity targets and the underlying mechanisms and to provide more evidence and recommendations to enhance the safety of its clinical application.

2.
Phytomedicine ; 126: 155444, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367423

RESUMEN

BACKGROUND: Stomach diseases have become global health concerns. Protoberberine alkaloids (PBAs) are a group of quaternary isoquinoline alkaloids from abundant natural sources and have been shown to improve gastric disorders in preclinical and clinical studies. The finding that PBAs exhibit low oral bioavailability but potent pharmacological activity has attracted great interest. PURPOSE: This review aims to provide a systematic review of the molecular mechanisms of PBAs in the treatment of gastric disorders and to discuss the current understanding of the pharmacokinetics and toxicity of PBAs. METHODS: The articles related to PBAs were collected from the Web of Science, Pubmed, and China National Knowledge Infrastructure databases using relevant keywords. The collected articles were screened and categorized according to their research content to focus on the gastroprotective effects, pharmacokinetics, and toxicity of PBAs. RESULTS: Based on the results of preclinical studies, PBAs have demonstrated therapeutic effects on chronic atrophic gastritis and gastric cancer by activating interleukin-4 (IL-4)/signal transducer and activator of transcription 6 (STAT6) pathway and suppressing transforming growth factor-beta 1 (TGF-ß1)/phosphoinositide 3-kinase (PI3K), Janus kinase-2 (JAK2)/signal transducers and activators of transcription 3 (STAT3), and mitogen-activated protein kinase (MAPK) pathways. The major PBAs exhibit similar pharmacokinetic properties, including rapid absorption, slow elimination, and low bioavailability. Notably, the natural organ-targeting property of PBAs may account for the finding of their low blood levels and high pharmacological activity. PBAs interact with other compounds, including conventional drugs and natural products, by modulation of metabolic enzymes and transporters. The potential tissue toxicity of PBAs should be emphasized due to their high tissue accumulation. CONCLUSION: This review highlights the gastroprotective effects, pharmacokinetics, and toxicity of PBAs and will contribute to the evaluation of drug properties and clinical translational studies of PBAs, accelerating their transfer from the laboratory to the bedside.


Asunto(s)
Alcaloides , Alcaloides de Berberina , Medicamentos Herbarios Chinos , Fosfatidilinositol 3-Quinasas , Alcaloides/farmacología , Alcaloides/química , Alcaloides de Berberina/farmacología , Medicamentos Herbarios Chinos/farmacología
3.
Food Res Int ; 180: 114068, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395544

RESUMEN

Gallic acid (GA), a dietary phenolic acid with potent antioxidant activity, is widely distributed in edible plants. GA has been applied in the food industry as an antimicrobial agent, food fresh-keeping agent, oil stabilizer, active food wrap material, and food processing stabilizer. GA is a potential dietary supplement due to its health benefits on various functional disorders associated with oxidative stress, including renal, neurological, hepatic, pulmonary, reproductive, and cardiovascular diseases. GA is rapidly absorbed and metabolized after oral administration, resulting in low bioavailability, which is susceptible to various factors, such as intestinal microbiota, transporters, and metabolism of galloyl derivatives. GA exhibits a tendency to distribute primarily to the kidney, liver, heart, and brain. A total of 37 metabolites of GA has been identified, and decarboxylation and dihydroxylation in phase I metabolism and sulfation, glucuronidation, and methylation in phase Ⅱ metabolism are considered the main in vivo biotransformation pathways of GA. Different types of nanocarriers, such as polymeric nanoparticles, dendrimers, and nanodots, have been successfully developed to enhance the health-promoting function of GA by increasing bioavailability. GA may induce drug interactions with conventional drugs, such as hydroxyurea, linagliptin, and diltiazem, due to its inhibitory effects on metabolic enzymes, including cytochrome P450 3A4 and 2D6, and transporters, including P-glycoprotein, breast cancer resistance protein, and organic anion-transporting polypeptide 1B3. In conclusion, in-depth studies of GA on food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions have laid the foundation for its comprehensive application as a food additive and dietary supplement.


Asunto(s)
Antioxidantes , Ácido Gálico , Antioxidantes/farmacología , Ácido Gálico/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Disponibilidad Biológica , Sistema de Administración de Fármacos con Nanopartículas , Proteínas de Neoplasias/metabolismo , Interacciones Farmacológicas , Proteínas de Transporte de Membrana/metabolismo , Industria de Alimentos
4.
J Ethnopharmacol ; 308: 116265, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36806484

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Armeniacae Semen Amarum (Prunus armeniaca L. var. ansu Maxim., Ku xingren, bitter almond, ASA) is an important medicine in Traditional Chinese Medicine (TCM). It is widely used because of its remarkable curative effect in relieving cough and asthma, moistening intestines and defecating. AIM OF THE REVIEW: This review aims to enlighten the deeper knowledge about ASA, giving a comprehensive overview of its traditional uses, phytochemistry, pharmacology and toxicology for future investigation of plant-based drugs and therapeutic applications. MATERIALS AND METHODS: The databases used are Web of Science, PubMed, Baidu academic, Google academic, CNKI, Wanfang and VIP . In addition, detailed information on ASA was obtained from relevant monographs such as Chinese Pharmacopoeia. RESULTS: The active components of ASA mainly include amygdalin, bitter almond oil, essential oil, protein, vitamin, trace elements and carbohydrates. The pharmacological studies have shown that ASA has beneficial effects such as antitussive, antiasthmatic, anti-inflammatory, analgesic, antioxidant, antitumour, cardioprotective, antifibrotic, immune regulatory, bowel relaxation, insecticidal, etc. CONCLUSIONS: Many reports have been published on ASA's various active ingredients and biological uses. However, only a few reviews on its phytoconstituents and pharmacological uses. In addition, the exploration and development of ASA in other fields also deserve more attention in future research.


Asunto(s)
Amigdalina , Medicamentos Herbarios Chinos , Semillas , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Fitoquímicos/farmacología , Etnofarmacología
5.
Food Chem ; 404(Pt B): 134701, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36327510

RESUMEN

Peptides with strong antioxidant activity have been increasingly extracted from various edible aquatic animals, as natural substitutes for synthetic antioxidants. In this paper, a systematic review of the research progress on the enzymatic hydrolysis strategy and structure-activity relationship of antioxidant peptides from edible aquatic animals, especially marine animals, over the last decade was presented. The selection of enzymes varied markedly among organs and tissues. Tools and indicators used in the purification and identification process were clarified. The similarity and the difference in structure and antioxidant activity between vertebrate-derived peptides and invertebrate-derived peptides were discussed. The stability of antioxidant peptides was reviewed. Most peptides could maintain activity under mild conditions, but they hardly resisted gastrointestinal digestion. The poor ability of peptides to cross the small intestinal epithelium in prototype form brought a challenge for food and pharmaceutical applications.


Asunto(s)
Antioxidantes , Péptidos , Animales , Antioxidantes/química , Péptidos/química , Hidrólisis , Relación Estructura-Actividad
6.
Front Nutr ; 9: 1002147, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313111

RESUMEN

Syzygium aromaticum is an aromatic plant native to Indonesia, and introduced to tropical regions worldwide. As an ingredient in perfumes, lotions, and food preservation, it is widely used in the food and cosmetic industries. Also, it is used to treat toothache, ulcers, type 2 diabetes, etc. A variety of nutrients such as amino acids, proteins, fatty acids, and vitamins are found in S. aromaticum. In addition to eugenol, isoeugenol, eugenol acetate, ß-caryophyllene and α-humulene are the main chemical constituents. The chemical constituents of S. aromaticum exhibit a wide range of bioactivities, such as antioxidant, antitumor, hypoglycemic, immunomodulatory, analgesic, neuroprotective, anti-obesity, antiulcer, etc. This review aims to comprehend the information on its taxonomy and botany, nutritional composition, chemical composition, bioactivities and their mechanisms, toxicity, and potential applications. This review will be a comprehensive scientific resource for those interested in pursuing further research to explore its value in food.

7.
Front Pharmacol ; 13: 952061, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091757

RESUMEN

Atractylodes macrocephala Koidz (AM), traditional Chinese medicine (TCM) with many medicinal values, has a long usage history in China and other oriental countries. The phytochemical investigation revealed the presence of volatile oils, polysaccharides, lactones, flavonoids, and others. The polysaccharides from AM are important medicinal components, mainly composed of glucose (Glc), galactose (Gal), rhamnose (Rha), arabinose (Ara), mannose (Man), galacturonic acid (GalA) and xylose (Xyl). It also showed valuable bioactivities, such as immunomodulatory, antitumour, gastroprotective and intestinal health-promoting, hepatoprotective, hypoglycaemic as well as other activities. At the same time, based on its special structure and pharmacological activity, it can also be used as immune adjuvant, natural plant supplement and vaccine adjuvant. The aim of this review is to summarize and critically analyze up-to-data on the chemical compositions, biological activities and applications of polysaccharide from AM based on scientific literatures in recent years.

8.
Int J Biol Macromol ; 217: 536-551, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35843404

RESUMEN

Poria cocos polysaccharide (PCP) is one of the main active components of Poria cocos that is extensively used in the world. PCP can be divided into intro-polysaccharides and exopolysaccharides. PCP is mainly composed of glucose, galactose and mannose. There are many methods to exact PCP, and methods can affect its yield. PCP and its derivatives exhibit diverse biological functions such as antitumour, antioxidant, anti-inflammatory, immune-regulatory, hepatoprotective, etc. There is the potential application of PCP as drug carriers. The review provides a comprehensive summary of the latest extraction and purification methods of PCP, its chemistry, synthesis of PCP derivates, their pharmacological activities and their applications as drug carriers. This review provides comprehensive information on PCP, which can be used as the basis for further research on PCP and its derivates.


Asunto(s)
Poria , Wolfiporia , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Carbohidratos de la Dieta , Portadores de Fármacos , Polisacáridos/química , Polisacáridos/farmacología , Poria/química , Wolfiporia/química
9.
Curr Drug Metab ; 22(3): 173-184, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33243112

RESUMEN

BACKGROUND: Catalpol, an iridoid glycoside, is one of the richest bioactive components present in Rehmannia glutinosa. More and more metabolites of drugs have exhibited various pharmacological effects, thus providing guidance for clinical application. However, few researches have paid attention to the metabolism of catalpol. OBJECTIVE: This study aimed to establish a rapid and effective method to identify catalpol metabolites and evaluate the biotransformation pathways of catalpol in rats. METHODS: In this study, catalpol metabolites in rat urine, plasma and faeces were analyzed by UHPLC-Q-Exactive MS for the characterization of the metabolism of catalpol. Based on high-resolution extracted ion chromatograms (HREICs) and parallel reaction monitoring mode (PRM), metabolites of catalpol were identified by comparing the diagnostic product ions (DPIs), chromatographic retention times, neutral loss fragments (NLFs) and accurate mass measurement with those of catalpol reference standard. RESULTS: A total of 29 catalpol metabolites were detected and identified in both negative and positive ion modes. Nine metabolic reactions, including deglycosylation, hydroxylation, dihydroxylation, hydrogenation, dehydrogenation, oxidation of methylene to ketone, glucuronidation, glycine conjugation and cysteine conjugation, were proposed. CONCLUSION: A rapid and effective method based on UHPLC-Q-Exactive MS was developed to mine the metabolism information of catalpol. Results of metabolites and biotransformation pathways of catalpol suggested that when orally administrated, catalpol was firstly metabolized into catalpol aglycone, after which phase I and phase II reactions occurred. However, hydrophilic chromatography-mass spectrometry is still needed to further find the polar metabolites of catalpol.


Asunto(s)
Glucósidos Iridoides/metabolismo , Administración Oral , Animales , Cromatografía Líquida de Alta Presión/métodos , Heces/química , Glucósidos Iridoides/administración & dosificación , Glucósidos Iridoides/farmacocinética , Masculino , Metabolómica/métodos , Modelos Animales , Ratas , Rehmannia/química , Espectrometría de Masas en Tándem/métodos , Orina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...